Hasty Briefsbeta

Universal Gradient Methods in Nonlinear Optimization

a day ago
  • #nonlinear
  • #gradient-methods
  • #optimization
  • Universal first-order methods for Composite Optimization with new complexity analysis.
  • Provides universal convergence guarantees not directly linked to any parametric problem class.
  • Convergence rates for specific problem classes via Global Curvature Bound substitution.
  • Analyzes simple gradient method for nonconvex minimization and convex composite optimization.
  • Accelerated variant ensures best possible convergence rate across all parametric problem classes.
  • Input parameter is the required accuracy of the approximate solution.